Complex ordered patterns in mechanical instability induced geometrically frustrated triangular cellular structures.
نویسندگان
چکیده
Geometrical frustration arises when a local order cannot propagate throughout the space because of geometrical constraints. This phenomenon plays a major role in many systems leading to disordered ground-state configurations. Here, we report a theoretical and experimental study on the behavior of buckling-induced geometrically frustrated triangular cellular structures. To our surprise, we find that buckling induces complex ordered patterns which can be tuned by controlling the porosity of the structures. Our analysis reveals that the connected geometry of the cellular structure plays a crucial role in the generation of ordered states in this frustrated system.
منابع مشابه
Exotic phases in geometrically frustrated triangular Ising magnets
We report a systematic study of both quantum and classical geometrically frustrated Ising models with competing ordering mechanism. The ordering comes in the classical case from a coupling of two-dimensional (2D) layers and in the quantum model from the quantum dynamics induced by a transverse field. We develop a microscopic derivation of the Landau–Ginzburg–Wilson (LGW) Hamiltonian for these m...
متن کاملوابستگی نظم پیچشی به درجه همسانگردی در هامیلتونی هابارد شبکههای مثلثی
Investigation of broken symmetry phases with long range order in strongly correlated electron systems is among subjects that have always been of interest to condensed matter scientists. In this paper we tried to study the existence of the 120 degrees magnetic spiral order, based on anisotropy in geometrically frustrated triangular lattices, using variational cluster approximation. We observed t...
متن کاملGlassy Dynamics in Geometrically Frustrated Coulomb Liquids without Disorder.
We show that introducing long-range Coulomb interactions immediately lifts the massive ground state degeneracy induced by geometric frustration for electrons on quarter-filled triangular lattices in the classical limit. Important consequences include the stabilization of a stripe-ordered crystalline (global) ground state, but also the emergence of very many low-lying metastable states with amor...
متن کاملFrustration-induced nanometre-scale inhomogeneity in a triangular antiferromagnet
Phase inhomogeneity of otherwise chemically homogenous electronic systems is an essential ingredient leading to fascinating functional properties, such as high-Tc superconductivity in cuprates, colossal magnetoresistance in manganites and giant electrostriction in relaxors. In these materials distinct phases compete and can coexist owing to intertwined ordered parameters. Charge degrees of free...
متن کاملCascade of magnetic-field-induced quantum phase transitions in a spin-1/2 triangular-lattice antiferromagnet.
We report magnetocaloric and magnetic-torque evidence that in Cs2CuBr4--a geometrically frustrated Heisenberg S=1/2 triangular-lattice antiferromagnet--quantum fluctuations stabilize a series of spin states at simple increasing fractions of the saturation magnetization Ms. Only the first of these states--at M=1/3Ms--has been theoretically predicted. We discuss how the higher fraction quantum st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 112 9 شماره
صفحات -
تاریخ انتشار 2014